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Abstract. We study the γ-Z interference in the process e+e− → Υ → τ+τ− as a means to measure
the neutral current coupling of the b-quark. The helicity amplitudes are calculated from resonant and
background diagrams and the spin density matrix of the final state is discussed. The spin analyzer of the
τ ’s is illustrated with the decays πν and ρν → (ππ)ν. With 108Υ a sensitivity to gb

V of a few per cent
could be reachable.

1 Introduction

A precise determination of the fermionic electroweak cou-
plings can provide strong hints on the nature of new phy-
sics at high scales through the quantum corrections to the
effective theory at low energies. At present the excellent
experimental agreement with the predictions of the Stan-
dard Model [1] is used to set bounds on this new dynamics
beyond the Standard Model.

In this context, the agreement between the measured
Z − ff̄ couplings and the Standard Model is very good.
However, while the lepton couplings have been indepen-
dently measured for the three families at LEP, for the
quarks only the b and c events can be separated in the
hadronic event sample and consequently their couplings
measured. From the measurements of Rb and Ab [2] we
can get the values of the vector and axial couplings of
Z to bb̄ [3]. Using the results quoted in [2], and defining
the vector and axial couplings in the Standard Model as
gb

V = −1/4+sin2 θW /3 and gb
A = 1/4, the accuracy on the

bottom-Z couplings is: δgb
V = ±0.013 and δgb

A = ±0.007.
It is important to notice that while the uncertainty in the
gb

A coupling is only of 2.8%, the gb
V measurement has an

uncertainty of 7.5%.
For the light quarks this separation has not been achie-

ved at LEP and so an exclusive determination of their cou-
plings is not available. A study of the final state distribu-
tions at different meson facilities can provide independent
measurements of these couplings. In a previous work [4],
we showed that a Φ factory with polarized e− beams can
supply the information on the s-quark couplings.

We show in this work that a detailed study of the final
state distributions of the decay products of the τ ’s for
e+e− → Υ → τ+τ− would provide valuable information
on the vector Z − bb̄ coupling, gb

V .
To determine this coupling at energies well below the

Z pole, we propose to measure the interference between γ
and Z. The bb̄ mesons which can couple to both γ and Z

are the Υ mesons. We are interested in a process in which
the Υ is coupled to a Z either in its production or in its
decay. This means that our study for the final τ´s includes
the decay of a polarized Υ or its weak decay.

For these reasons, we analyze the leptonic decays of
the Υ resonances, therefore we could use Υ (1S), Υ (2S)
and Υ (3S), but not Υ (4S) that decays dominantly to BB̄
where the information on the Υ polarization is lost. In this
work we will concentrate on the Υ (1S) resonance, but ev-
erything would be similar for Υ (2S) and Υ (3S). We can
see in Table 1 that the branching ratios of Υ (1S) to the
three charged leptons are approximately 2.5%, but e+e−
and µ+µ− can not be used because their polarizations are
not measurable in the detector through decay distribu-
tions. Obviously e+e− are stable particles and µ+µ− at
this energy do not decay inside the detector. As we see
explicitly below, all the relevant information on gb

V that
comes from a P-odd γ−Z interference, appears at leading
order in the polarization of the final leptons. This means
that we are constrained to consider the decay Υ → τ+τ−
and to measure the τ polarizations.

To estimate the sensitivity of this process to the vector
coupling, let us first consider the τ− longitudinal polar-
ization, suggested in [5] in another context. We make a
reasonable approximation in order to get a simple and
clean result: the resonant diagrams dominate the process
on the Υ (1S) peak. So, we consider only diagrams (2), (3)
and (4) in Fig. 1. Under these conditions we get a longitu-
dinal polarization from the parity violating interferences
of the dominant amplitude (2) with the neutral current
amplitudes (3) + (4).

Pz′ = 2
8GF√

2
s

4πα
gA

gb
V

Qb

× (1 + cos2 θ)|p| p0 + 2 cos θ(p0)2

(1 + cos2 θ)(p0)2 + sin2 θM2
τ

(1)
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Fig. 1. Resonant and non-resonant diagrams for the process
e+e− → τ+τ− around the Υ resonance

where gA = 1/4 is the axial coupling to the leptons, Qb

the charge of the b quark and pµ = (p0,p(θ)) the four-
momentum of the τ−.

In this expression we can discover some interesting fea-
tures of this observable:

– It is linear on gb
V , the vector coupling which we want to

determine, showing up together with the axial coupling
of the Z to leptons.

– The magnitude of the τ -polarization on the Υ peak
is set by the factor 8GFM

2
Υ /(4πα

√
2) ' 0.064, that

translates into Pz′(θ = 0) = 0.032.
– It is independent of the hadronic structure of the res-

onance which cancels in the ratio.

All these properties are modified when we include non-
resonant diagrams, but the new contributions correct this
result at the level of a few per cent only. In [6] it was
shown that the interference of resonance and background
leads to an enhancement of the polarization in the vicinity
of the resonance. Approximately at four widths below the
resonance one gets a polarization five times bigger, but the
number of events decreases by three orders of magnitude.
It is more efficient from statistics to stay on the peak of
the resonance.

Table 1. Dominant Υ (1S) decay channels

Υ (1S) IG(JPC) = 0−(1−−)
Mass MΥ = 9460.37 ± 0.21 MeV

Width Γ = 52.5 ± 1.8 KeV
Decay modes Fraction Γi/Γ

τ+τ− (2.67+0.14
−0.16)%

µ+µ− (2.52 ± 0.17)%
e+e− (2.48 ± 0.07)%
J/ψ(1S) anything (1.1 ± 0.4) × 10−3

γ 2h+2h− (7.0 ± 1.5) × 10−4

γ 3h+3h− (5.4 ± 2.0) × 10−4

γ 4h+4h− (7.4 ± 3.5) × 10−4

The above example indicates that a more detailed anal-
ysis of the problem is worth. In the next section we cal-
culate the complete τ−τ+ density matrix in this process
which contains all the relevant information on gb

V . In Se-
ct. 3 we study the hadronic decays of the τ to analyze
the τ density matrix. From here, Sect. 4 is devoted to the
statistical accuracy that is possible to reach in the mea-
surement of the vector coupling to the b quark in each
channel.

2 τ+τ− density matrix

The density matrix from e−(ξ−, l−)e+(ξ+, l+) → τ−(λ−,
p−)τ+(λ+,p+), in terms of helicity amplitudes [7], when
the initial beams are unpolarized, is given by

ρτ
(λ−,λ+),(λ′

−,λ′
+) =

∑
ξ

f(λ−,λ+),ξ (θ)f∗
(λ′

−,λ′
+),ξ (θ) (2)

where the angle (θ) is given by the direction of the τ−
relative to the initial e− beam, with the x-z plane defined
as the scattering plane.

Using reduced helicity amplitudes, T J
λξ, and rotation

matrices these helicity amplitudes are [7],

fλ,ξ (θ) = dJ
ξ,λ(θ)T J

λξ (3)

where λ = λ− − λ+, ξ = ξ− − ξ+ and dJ
ξ,λ(θ) are the re-

duced rotation matrices around the y-axis. If we neglect
the electron mass, the total angular momentum of the pro-
cess is always J = 1. Therefore we get (3) where we have
re-defined our reduced helicity amplitudes with respect to
[7], including in our definition several normalization fac-
tors irrelevant in our analysis [4]. Furthermore, helicity
conservation in the electron vertex implies that the value
of ξ fixes ξ = (ξ+, ξ−) too. The reduced helicity amplitudes
get contributions from diagrams (1) to (5) in Fig. 1. For
the dominant amplitudes which contribute, through inter-
ferences, to P-odd and C-odd observables we can write the
following terms

Tλ,ξ = Tλ,ξ(γ) + Tλ,ξ(γZA)
+Tλ,ξ(ZAγ) + Tλ,ξ(ZA,A) (4)
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where Tλ,ξ(γ) accounts for the contribution of diagrams
(1) and (2). Tλ,ξ(γZA) is the P-violating piece of diagram
(3) plus the V A piece of diagram (5) and Tλ,ξ(ZγA) the
corresponding P-violating piece of diagram (4) plus the
AV piece of diagram (5). Finally Tλ,ξ(ZA,A) is the con-
tribution of diagram (5) with axial couplings in the ini-
tial and final vertices. Notice that (4) does not include
the Tλ,ξ(γZV ), Tλ,ξ(ZγV ) and Tλ,ξ(ZV,V ) pieces, because
they are sub-dominant with respect to Tλ,ξ(γ), both in the
resonant and non-resonant components.

Taking into account the transformation properties un-
der P of the four amplitudes in (4) we get

Tλ,ξ(γ) = T−λ,−ξ(γ) = Tλ,−ξ(γ) = T−λ,ξ(γ)
Tλ,ξ(γZA) = −T−λ,−ξ(γZA) = Tλ,−ξ(γZA)

= −T−λ,ξ(γZA)
Tλ,ξ(ZAγ) = −T−λ,−ξ(ZAγ) = −Tλ,−ξ(ZAγ)

= T−λ,ξ(ZAγ)
Tλ,ξ(ZAA) = T−λ,−ξ(ZAA) = −Tλ,−ξ(ZAA)

= −T−λ,ξ(ZAA) (5)

where the normalization of the reduced helicity ampli-
tudes is such that

dσ

dΩ
= Tr(ρout) = 2 sin2 θ|T(+,+),1(γ)|2

+(1 + cos2 θ)|T(+,−),1(γ)|2 + 4 cos θ
×Re{T(+,−),1(γ)T ∗

(+,−),1(ZA,A)} (6)

σ =
16π
3

(|T(+,+),1(γ)|2 + |T(+,−),1(γ)|2) (7)

Notice that a C-odd forward-backward asymmetry is gen-
erated by the axial couplings of the Z to both electron and
τ vertices.

We calculate the independent reduced helicity ampli-
tudes (see (5) for symmetries) from the Feynman dia-
grams 1-5 of Fig. 1 following the method explained in
Appendix B:

KT(+,+),1(γ) = −i4
√

2
e2

s
(1 +

e2

s
Q2

b |FΥ |2PΥ ) Mτ

√
s

2

KT(+,−),1(γ) = −i8 e2

s
(1 +

e2

s
Q2

b |FΥ |2PΥ ) p0
√
s

2
KT(+,+),1(γZA) = 0

KT(+,−),1(γZA) = −i88GF√
2
gA

×(
e2

s
Qbg

b
V |FΥ |2PΥ − gV ) |p|

√
s

2

KT(+,+),1(ZAγ) = −i4
√

2
8GF√

2
gA

×(
e2

s
Qbg

b
V |FΥ |2PΥ − gV ) Mτ

√
s

2

KT(+,−),1(ZAγ) = −i88GF√
2
gA

×(
e2

s
Qbg

b
V |FΥ |2PΥ − gV ) p0

√
s

2

KT(+,+),1(ZAA) = 0

KT(+,−),1(ZAA) = i8
8GF√

2
g2

A |p|
√
s

2
(8)

where K is a constant which takes care of the different
normalization of the helicity amplitudes and the Feynman
amplitudes. Qb = − 1

3 is the charge of the b quark, gV (A)
is the vector (axial) coupling to the leptons, PΥ stands for
the Breit-Wigner propagator of the Υ ,

PΥ (s) =
1

(s−M2
Υ ) + iMΥΓΥ

(9)

and FΥ (q2) is the vector form factor defined as,

〈Υ (ω,q)|ψ̄b(0)γµψb(0)|0〉 =

= FΥ (q2)ε∗
µ(ω,q) (10)

with ε∗
µ(ω,q), the polarization four-vector. This form fac-

tor can be related to the partial width of Υ to e+e−,

Γe =
1
6π
Q2

b

(4πα)2

M4
Υ

|FΥ |2MΥ

2
(11)

Notice that all the hadronic uncertainties in our process
will be included in this unique form factor. In (8) we can
see that the coupling gb

V appears linearly in the Tλ,ξ(γZA)
and Tλ,ξ(ZAγ) amplitudes. As these two amplitudes con-
tribute, to dominant order, to the observables through in-
terferences with Tλ,ξ(γ), only the P-odd observables con-
tain information on the gb

V coupling linearly. As a conse-
quence, we analyze the polarizations and the P-odd cor-
relations.

The polarizations of τ− are given as follows

dσ

dΩ
P

(−)
z′ (θ) = ρ(+,+),(+,+) + ρ(+,−),(+,−)

−ρ(−,+),(−,+) − ρ(−,−),(−,−)

= 2Re{T(+,−),1(γ)T ∗
(+,−),1(γZA)}

×(1 + cos2 θ) + 4Re{T(+,−),1(γ)
×T ∗

(+,−),1(ZAγ)} cos θ (12)

dσ

dΩ
P

(−)
x′ (θ) = ρ(+,+),(−,+) + ρ(+,−),(−,−)

+ρ(−,+),(+,+) + ρ(−,−),(+,−)

= −2
√

2[Re{T(+,+),1(γ)
×T ∗

(+,−),1(γZA)} sin θ cos θ

+(Re{T(+,+),1(γ)T ∗
(+,−),1(ZAγ)}

+Re{T(+,−),1(γ)
×T ∗

(+,+),1(ZAγ)}) sin θ] (13)

dσ

dΩ
P

(−)
y′ (θ) = −i(ρ(+,+),(−,+) + ρ(+,−),(−,−)

−ρ(−,+),(+,+) − ρ(−,−),(+,−))

= 2
√

2[Im{T(+,+),1(γ)T ∗
(+,−),1(ZA,A)} sin θ

+2Im{T(+,+),1(γ)
×T ∗

(+,−),1(γ)} sin θ cos θ] (14)
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Fig. 2. Longitudinal τ− polarization, Pz′(θ)

As we can see in these expressions, only Pz′ and Px′ con-
tain information on gb

V , because both are P-odd, T-even
observables. On the contrary, Py′ has no information on
gb

V , because it is P-even, T-odd. The T-odd observable Py′

needs the interference between resonant and non-resonant
amplitudes, which on the Υ peak are relatively imaginary.
By the same argument, there is no interference between
resonant and non-resonant pieces in the T-even observ-
ables, like Pz′ and Px′ , on the Υ peak. If we compare the
longitudinal polarization, (12), with the result obtained
in (1) the difference is in the non-resonant terms propor-
tional to gV in (8). Thus the new terms are suppressed on
the Υ peak by a factor gV α

2Qb/(9gb
V b.r.(Υ → e+e−)2) ≈

3.5 × 10−4, so that our estimate in (1) is very good. The
value of the longitudinal polarization of the τ in the for-
ward direction is Pz′(θ = 0) ' .185 ·gb

V ' 0.032. In Fig. 2,
we plot this polarization as a function of the scattering
angle θ.

On the other hand Px′ contains similar reduced helicity
amplitudes as Pz′ , the only difference is that transverse
polarizations are suppressed by a mass insertion, that is
a factor Mτ/p

0 ' .38. Basically, apart from a different
angular dependence, this is the reason that makes this
observable less sensitive to gb

V as we can see in Fig. 3. We
get for instance Px′(θ = π/2) ' −.063 · gb

V , slightly lower
than Pz′ .

The information contained in the τ+ polarizations is
closely related to that of the τ−

P
(+)
z′ = −P (−)

z′ ; P
(+)
x′ = P

(−)
x′ ; P

(+)
y′ = −P (−)

y′ (15)

Finally, we also consider the spin correlations between τ+

and τ−, defined as follows,

dσ

dΩ
Cij(θ) = Tr(σ(−)

i σ
(+)
j ρτ )
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Fig. 3. Transverse τ− polarization, Px′(θ)

With this definition it is easy to see that the only P-odd
observables are the Cx,y, Cz,y, Cy,x and Cy,z correlations,

dσ

dΩ
Czy(θ) = i(−ρ(+,+),(+,−)

+ρ(−,+),(−,−) + ρ(+,−),(+,+) − ρ(−,−),(−,+))

= −2
√

2[Im{T(+,+),1(γ)
×T ∗

(+,−),1(γZA)} sin θ cos θ

+(Im{T(+,+),1(γ)T ∗
(+,−),1(ZAγ)}

−Im{T(+,−),1(γ)T ∗
(+,+),1(ZAγ)}) sin θ] (16)

Cyz(θ) = Czy(θ) (17)

dσ

dΩ
Cxy(θ) = i(−ρ(+,+),(−,−) − ρ(−,+),(+,−)

+ρ(+,−),(−,+) + ρ(−,−),(+,+)) (18)

= 2Im{T(+,−),1(γ)T ∗
(+,−),1(γZA)} sin2 θ

Cyx(θ) = −Cxy(θ)

As we pointed out before all the relevant observables are
associated to the amplitudes Tλ,ξ(γZA) and Tλ,ξ(ZAγ),
for which their strength relative to the dominant term
is set by the factor 8GFM

2
Υ /(4πα

√
2) ' 0.064. Unfortu-

nately, the P-odd correlations are also T-odd so that they
need an imaginary part. With our set of reduced helicity
amplitudes, it becomes necessary to have an interference
between resonant and non-resonant diagrams to get an
imaginary part. Therefore, these contributions have the
same suppression that diagram (1) with respect to dia-
gram (2), that is, α/(3 b.r.(Υ → e+e−)) ' 1/10. Notice
also that the helicity structure of Czy is very similar to
Px′ , and so it has the same suppression factor, unlike Cxy

which is not helicity suppressed.
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Table 2. Dominant τ decay channels

τ J = 1
2

Mass Mτ = 1777.00+0.30
−0.27 MeV

Mean life τ = (291.0 ± 1.5) × 10−15 s
Decay modes Fraction Γi/Γ

µ−ν̄µντ (17.35 ± 0.10)%
e−ν̄eντ (17.83 ± 0.08)%
π−ντ (11.31 ± 0.15)%
π−π0ντ (25.24 ± 0.16)%
h−2π0ντ (9.50 ± 0.14)%
h−h−h+ντ (9.80 ± 0.10)%

To conclude: the main P-odd observables able to sep-
arate gb

V are the longitudinal polarizations, Pz′ , of both
τ ’s, then the transverse polarization Px′ and finally Cxy

and Czy ordered from the most relevant to the least one.
In the next section we connect the observables of this

section to measurable quantities, analyzing the angular
distributions of the decay products of the two τ .

3 Decay of a polarized τ

The main τ decay channels are presented in Table 2. The
purely leptonic decays have branching ratios of 17.35% for
muons and 17.83% for electrons. Unfortunately, these de-
cay modes have two neutrinos in the final state, which im-
plies that the τ direction can not be reconstructed. Then,
their sensitivity to the τ polarization is small [8] compared
with the hadronic decays.

So we concentrate on the hadronic τ decays which have
only one neutrino in the final state and allow to recon-
struct the τ direction if both τ´s decay hadronically [9].
These decays are τ− → π−ντ , with a branching ratio of
11.31%, τ− → ρ−ντ which corresponds almost exactly to
the two pions channel, with branching ratio 25.24%, and
τ− → a−

1 ντ which is given by the sum of the three pion fi-
nal states. In this work we analyze the decays τ− → π−ντ

and τ− → ρ−ντ . Other τ decay channels have been stud-
ied elsewhere, for instance τ → a1ντ can be found in [10]
for LEP physics,

3.1 τ− → π−ντ

This channel has been used for a long time to measure the
τ polarization because of its good sensitivity. The differ-
ential decay width is given by,

1
Γ

dΓ

dΩ
=

1
4π

[1 + Pk̂(Ω)] (19)

where k̂ is the unit vector in the direction of the pion.
Equation (19) shows the good sensitivity to the polar-

ization from the angular distribution of the decay pions.
This is due to the fact that in this process there is only
one reduced helicity amplitude. Then, the angular distri-
bution is necessarily proportional to this unique helicity

amplitude which can be factorized. This is the reason for
the popularity of this channel as polarization analyzer in
τ decays.

With these elements, following Appendix A, we build
a complete two steps angular distribution [4,11] for the
whole process, e−e+ → τ−τ+ → (π−ντ )(π+ν̄τ )

dσ

dΩ dΩ+ dΩ−
=
dσ

dΩ
(1 + P(−) · k̂− − P(+) · k̂+

−Czz cos θ− cos θ+ − Cxx sin θ− cosφ− sin θ+ cosφ+

−Cyy sin θ− sinφ− sin θ+ sinφ+

−Czx cos θ− sin θ+ cosφ+ − Cxz sin θ− cosφ− cos θ+
−Czy cos θ− sin θ+ sinφ+ − Cyz sin θ− sinφ− cos θ+
− Cxy sin θ− cosφ− sin θ+ sinφ+

−Cyx sin θ− sinφ− sin θ+ cosφ+) (20)

where (θ±, φ±) is the direction of the π± in the rest frame
of the τ± and k̂± is the unit vector in this direction.

This is the cross section we have to study to extract gb
V

from this channel. In Sect. 4 we analyze the sensitivity of
the different observables constructed in Sect. 2 from this
cross section.

3.2 τ− → ρ−ντ → π−π0ντ

In the channel τ → ρντ we have a spin 1 particle in the
final state. This implies that we have two different helicity
amplitudes for the decay, and so different combinations of
these two amplitudes enter in the polarized and unpolar-
ized pieces,

1
Γτ→ρν

dΓτ→ρν

dΩ
=

1
4π

[1 + αρPk̂(Ω)] (21)

where αρ is a ratio of reduced helicity amplitudes, T j
ν de-

fined below in (27,28,29), which we get in terms of the
masses as,

αρ =
|T0,−1/2|2 − |T−1,−1/2|2
|T0,−1/2|2 + |T−1,−1/2|2

=
M2

τ − 2M2
ρ

M2
τ + 2M2

ρ

= 0.456 (22)

Then, in spite of its bigger branching ratio, the sensi-
tivity of the ρ channel at this level is smaller than in
τ → πντ . However, as pointed out in [8], this situation
can be improved if, in addition, we try to get some ex-
tra information on the ρ helicity. To do this, we include
another step in this chain of decays, and analyze the de-
cay ρ− → π−π0. The cross section for the whole process,
e−e+ → τ−τ+ → ((π−π0)ντ )(ρ+ν̄τ ), can be written as,

dσ

dΩdΩ−
1 dΩ

+
1 dΩ2

=
dσ

dΩ
(e+e− → τ+τ−)

× 1
Γ 2

τ

dΓτ−τ+→ρ−νρ+ν̄

dΩ−
1 dΩ

+
1

× 1
Γρ

dΓρ−→π−π0

dΩ2
(23)
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where the τ−τ+ decay amplitude to ρ−νρ+ν̄ is given be-
low in (33), and we have added the last factor which is the
decay width of a polarized and aligned ρ into two pions.
The expression for this decay width is

1
Γρ→ππ

dΓρ→ππ

dΩ2
=

1
4π

×[1 −
√

10
∑
N

D(2)
N,0(φ2, θ2, 0)t2,N ] (24)

where t2,N are the tensor polarizations of the ρ.
In Eq(24), we see that the ρ polarizations do not ap-

pear in the decay angular distribution because ρ → ππ
is a strong decay and therefore P-conserving. The align-
ments, higher order multipole parameters, do appear but
the polarizations do not.

Now, we calculate the density matrix for a ρ coming
from the decay of a polarized τ in its center of mass frame,
and then apply the necessary Wigner rotation [12], as ex-
plained in App. A, to get the density matrix in a frame
where the τ is boosted.

The density matrix of a single ρ from the decay of one
of the two τs also contains information on the decay of the
other τ if we study the correlations and do not integrate
the second τ decay. So, as we are interested in the mea-
surement of correlations between the two τ´s, we study
the ρ− density matrix in a decay τ−τ+ → (ρ−ντ )(ρ+ν̄τ )
and in a decay τ−τ+ → (ρ−ντ )(π+ν̄τ ). Naturally these
two different density matrices will coincide when we inte-
grate completely the τ+ decay products.

Following Appendix A, we can write the complete ρ−
density matrix from a decay τ−τ+ → (ρ−ντ )(ρ+ν̄τ ) as

ρµ−µ′
− =

∑
λ+λ−λ′

+λ′
−

∑
ν−ν′

−ν+

f
(+)
(ν+1/2)λ+

(Ω+)dµ−ν−(ω−)f (−)
(ν−−1/2)λ−

(Ω−)

×ρτ
(λ−,λ+),(λ′

−,λ′
+)f

(+)∗
(ν+1/2)λ′

+
(Ω+)

×dµ′
−ν′

−(ω−)f (−)∗
(ν′

−−1/2)λ′
−
(Ω−) (25)

where we have used a reference system in LAB frame with
the τ− in the z-axis and the initial beams in the x-z plane,
to simplify the expressions for the Wigner rotations.

We define an effective density matrix ρ̄ without the
Wigner rotations that, if integrated over the Ω+ variables,
would correspond to the density matrix in the τ− rest
frame, which is

ρµ−µ′
− = dµ−ν−(ω−)ρ̄ν−ν′

−dµ′
−ν′

−(ω−) (26)

The next step is to calculate this effective density ma-
trix in terms of reduced helicity amplitudes. In a decay we
define the helicity amplitudes as,

fνλ(θ, φ) =

√
2j + 1

4π
Dj∗

λ,ν1−ν2
(φ, θ, 0)T j

ν (27)

With this definition and (25) and (26), we get our effective
density matrix. In this process, τ−(λ−,0) → ρ−(σ,k−)ντ

(−1/2,−k−), we have only two reduced helicity ampli-
tudes Tν if we take Mν = 0

KT−1,−1/2 = i4GF Vud Fρ(k2
−)

√
Mτk−

KT0,−1/2 = i2
√

2GF Vud Fρ(k2
−)

√
Mτk−

Mτ

Mρ
(28)

Similarly for the decay τ+(λ+,0) → ρ+(σ,k+)ν̄τ (1/2,
−k+),

KT1,1/2 = −i4GF Vud Fρ(k2
+)

√
Mτk+

KT0,1/2 = i2
√

2GF Vud Fρ(k2
+)

√
Mτk+

Mτ

Mρ
(29)

where Fρ(k2
±) is a form factor defined as,

〈ρ0(σ,k)|1
2
(ψ̄u(0)γµψu(0) − ψ̄d(0)γµψd(0))|0〉

= Fρ(k2)ε∗
µ(σ,k) (30)

and this form factor can be related with the form factors
for the charged ρ‘s through the Wigner-Eckart theorem,

〈ρ±(σ,k)| 1√
2
ψ̄u,d(0)γµψd,u(0)|0〉 = F±(k2)ε∗

µ(σ,k) (31)

Fρ(k2) = −F+(k2) = −F−(k2)

and εµ(σ, k) is the polarization four-vector.
The total rate for τ− → ρ−ντ is,

Γτ→ρυ =
1

2Mτ
(|T−1,−1/2|2 + |T0,−1/2|2) (32)

Following Appendix A, we calculate the C.M. multipole
parameters corresponding to the density matrix ρ̄ in terms
of the reduced amplitudes of (28,29), taking into account
that we do not integrate the direction of the second ρ. The
angular distribution is

dΓτ−τ+

dΩ−
1 dΩ

+
1

= Tr{ρ} = ρ−1,−1 + ρ0,0

= (|T−1,−1/2|2 + |T0,−1/2|2)(|T1,1/2|2 + |T0,1/2|2)
[1 + αρP̄ · k̂− − ᾱP̄ · k̂+ − αρᾱ(Czz cos θ− cos θ+
+ Cxx sin θ− cosφ− sin θ+ cosφ+

+Cyy sin θ− sinφ− sin θ+ sinφ+

+Czx cos θ− sin θ+ cosφ+ + Cxz sin θ− cosφ− cos θ+
+ Czy cos θ− sin θ+ sinφ+ + Cyz sin θ− sinφ− cos θ+
+ Cxy sin θ− cosφ− sin θ+ sinφ+

+Cyx sin θ− sinφ− sin θ+ cosφ+)] (33)

Here (θ±, φ±) is the direction of the ρ± in the rest frame
of the τ± and k̂± is the unit vector in this direction. αρ

was defined in (22) and ᾱ is equal to αρ if the τ+ de-
cays to ρ+ν̄τ , but equal to 1 if it decays to π+ν̄τ . This
notation holds for all observables that follow. The tensor
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polarization t̄20 is

Tr{ρ}t̄20 =

√
1
10

(ρ−1,−1 − 2ρ0,0)

=

√
1
10

(|T−1,−1/2|2 + |T0,−1/2|2)
×(|T1,1/2|2 + |T0,1/2|2)[γρ − βρP̄

− · k̂− − ᾱγρP̄
+ · k̂+

+ᾱβρ(Czz cos θ− cos θ+
+Cxx sin θ− cosφ− sin θ+ cosφ+

+Cyy sin θ− sinφ− sin θ+ sinφ+

+Czx cos θ− sin θ+ cosφ+

+Cxz sin θ− cosφ− cos θ+ + Czy cos θ− sin θ+ sinφ+

+Cyz sin θ− sinφ− cos θ+
+ Cxy sin θ− cosφ− sin θ+ sinφ+

+Cyx sin θ− sinφ− sin θ+ cosφ+)] (34)

where we have introduced two new coefficients βρ and γρ

defined as

γρ =
|T−1,−1/2|2 − 2|T0,−1/2|2
|T0,−1/2|2 + |T−1,−1/2|2

=
2M2

ρ − 2M2
τ

M2
τ + 2M2

ρ

= −1.18 (35)

βρ =
|T−1,−1/2|2 + 2|T0,−1/2|2
|T0,−1/2|2 + |T−1,−1/2|2

=
2M2

ρ + 2M2
τ

M2
τ + 2M2

ρ

= 1.73 (36)

The other tensor polarizations t̄21 and t̄22 are,

Tr{ρ}t̄21 =

√
3
10
ρ−1,0 =

√
3
10

(|T−1,−1/2|2 + |T0,−1/2|2)
×(|T1,1/2|2 + |T0,1/2|2)[δρ(P−

z (− sin θ−)

+P−
x (cos θ− cosφ− − i sinφ−)

+P−
y (cos θ− sinφ− + i cosφ−))

−δρᾱ(Czz(− sin θ−) cos θ+
+ Cxx(cos θ− cosφ− − i sinφ−) sin θ+ cosφ+

+Cyy(cos θ− sinφ− + i cosφ−) sin θ+ sinφ+

+Czx(− sin θ−) sin θ+ cosφ+

+Cxz(cos θ− cosφ− − i sinφ−) cos θ+
+ Czy(− sin θ−) sin θ+ sinφ+

+Cyz(cos θ− sinφ− + i cosφ−) cos θ+
+ Cxy(cos θ− cosφ− − i sinφ−) sin θ+ sinφ+

+Cyx(cos θ− sinφ− + i cosφ−) sin θ+ cosφ+)] (37)

Tr{ρ}t̄22 =

√
3
5
ρ−1,1 = 0 (38)

where we have introduced a new coefficient

δρ =
T−1,−1/2T

∗
0,−1/2

|T0,−1/2|2 + |T−1,−1/2|2

=
√

2MρMτ

M2
τ + 2M2

ρ

= 0.445 (39)

In general, these multipole parameters can be complex, as
t̄21.

It is very important to notice that unlike αρ and δρ,
that are small, both γρ and βρ are bigger than one in
magnitude and so they can enhance the information on
the τ polarizations.

As we have already pointed out, the only difference be-
tween the decay distributions for τ−τ+ → (ρ−ντ )(ρ+ν̄τ )
and τ−τ+ → (ρ−ντ )(π+ν̄τ ) is the value of the coefficient
ᾱ

τ+ → ρ+ν̄τ =⇒ ᾱ = .456
τ+ → π+ν̄τ =⇒ ᾱ = 1 (40)

The final step to get the alignments appearing in (24) and
(23) needs to perform the Wigner rotation, (13).

t20 = d2
0M (ω−)t̄2M = t̄20(

3
2

cos2 ω− − 1
2
)

+
√

6Re{t̄21} sinω− cosω− (41)

t21 = d2
1M (ω−)t̄2M = −t̄20 cosω− sinω−

+iIm{t̄21} cosω−
+Re{t̄21}(cos2 ω−
− sin2 ω−) (42)

t22 = d2
2M (ω−)t̄2M = t̄20

√
6

4
sin2 ω−

−iIm{t̄21} sinω− −Re{t̄21} cosω− sinω− (43)

where ω is the Wigner rotation associated with the boost
from the τ rest frame to the e+e− C.M. frame which trans-
forms the ρ four-momentum, k′

ρ = Λkρ. These rotations
have the following expression

sinω =
Mρ|pτ | sin θ
Mτ | k′

ρ | , cosω =
EρE

′
ρMτ − EτM

2
ρ

| kρ || k′
ρ | Mτ

with (Eτ ,pτ ) the τ four-momentum in the e+e− C.M.
frame and θ the angle between the ρ and the direction of
the boost in the τ rest frame.

We have thus completed the angular distributions of
the different chains with final states:

– (π−ντ )(π+ν̄τ )
– (π−π0ντ )(π+ν̄τ ) + (π+π0ντ )(π−ν̄τ )
– (π−π0ντ )(ρ+ν̄τ ) + (π+π0ντ )(ρ−ν̄τ )

Next we find the statistical accuracy one can obtain in
the measurement of gb

V

4 Statistical sensitivity

To estimate the obtainable precision in the measurement
of gb

V in a B-meson facility, we use the formalism of refer-
ences [13–15]. In these references they call “ideal statistical
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error” of a parameter p which enters a function f(x, y; p)
to be determined experimentally, to the error obtained
from a least-squares-fit to this function with N events. To
obtain this error, we use that for large number of events,
N , the likelihood function approaches a gaussian. Then, if
the function f(x, y; p) is normalized to one on the physical
region, the ideal statistical error is given by

σ2
p =

1
N

[
∫

(
δ ln f(x1, . . . , xn; p)

δp
)2

·f(x1, ..., xn; p)dx1 . . . dxn]−1 (44)

The word “ideal” stands for the fact that we are not con-
sidering the efficiency of the detectors, effects of finite ex-
perimental resolution and we assume an ideal distribution
of the N events according to f(x, y; p).

In this case our function f(x, y; p) will be the normal-
ized cross section to the different channels. First we study
the reaction e−e+ → τ−τ+ → (π−ντ )(π+ν̄τ ). Our result
is, in this channel,

σgb
V

=
11.1√
N

(45)

where N is the number of e−e+ → τ−τ+ → (π−ντ )(π+ν̄τ )
events. This means that in a B-meson facility with 108 Υ
(1S) produced per year one could get a sensitivity to gb

V
of 6 · 10−2 only with this channel. Equation (20) gives all
information available in the process, but not all these ob-
servables will be useful for our purposes. In particular the
P-even, T-even correlations (Czz, Cxx, Cyy, Czx) get contri-
butions from |Tλ,ξ(γ)|2, so they are order 1 and they have
no information on gb

V . On the other hand, the P-odd, T-
odd correlations are not as sensitive to this parameter as
the polarizations. We can ask whether we can improve the
sensitivity by integrating out some of the final state vari-
ables. From (20) we would like to eliminate the P-even
correlations maintaining the polarizations and P-odd cor-
relations, but unfortunately we can not achieve this re-
sult integrating out some final state variables. The only
interesting possibility is to consider both τ decays inde-
pendently, integrating out one of the two pion directions
with respect to the τ . In this case we are considering the
e−e+ → τ−τ+ → ((π−ντ )τ+ + τ−(π+ν̄τ )) events, where
both τ are hadronically reconstructed. By doing this we
increase considerably the number of events, because now
we include also the events in which the second τ decays
to ρ and a1. This is approximately a factor of 5 in the
number of events for each tau, but we have two indepen-
dent events for each Υ decay, then the number of events
increases by a factor of 10. The sensitivity one can get
with this new decay distribution ( we obtain it directly
from (20) integrating out (θ+, φ+) ) is

σgb
V

=
14.6√
N

(46)

where N is the number of e−e+ → τ−τ+ → ((π−ντ )τ+ +
τ−(π+ν̄τ )) events. We can see that the difference between
(45) and (46) is roughly a factor

√
2, this is due to the fact

that in (45) we included both the τ+ and τ− polarizations

while in (46) we take into account only one of them. On
the other hand, this means that the P-odd correlations do
not improve the measurement of gb

V in a significant way.
Again with 108Υ per year, one can get a sensitivity of
2.3 · 10−2. Even more, the simplest polarization analyzer
we can use is the energy of the pions. The energy of the
pions in LAB is related with the angle in C.M. of the τ

Eπ =
E∗

πEτ + qk∗
π cos θ−

Mτ
(47)

where (E∗
π,k

∗
π(θ−)) is the four-momentum of the pion in

the τ C.M., and (Eτ ,q) the four-momentum of the τ in
LAB. Again from (20), if we integrate all the angular vari-
ables but θ− and make this change of variable to Eπ one
gets a sensitivity of

σgb
V

=
20.9√
N

(48)

And, in this way, we do not put any restriction on the
second τ decay, then with 108Υ per year one can get a
sensitivity to gb

V of 2.7 ·10−2, simply using the πν channel
and measuring only the pion energy. From this point of
view, it is evident that, if we consider only the πν decay
channel, this is the best strategy to measure gb

V , because
one can use all the τ → πν events and is experimentally
simpler.

We have also studied the channel τ → ρν as a po-
larization analyzer. Then if we apply (44) to the com-
plete distribution e−e+ → τ−τ+ → ((π−π0)ντ )(ρ+ν̄τ ) +
((π+π0)ντ )(ρ−ν̄τ ) given by (23) one gets

σgb
V

=
12.4√
N

(49)

that is slightly worse than our result in the e−e+ → τ−τ+

→ (π−ντ )(π+ν̄τ ) channel, but now we have more events
because this channel has a bigger branching ratio. This
translates in a B-meson facility with 108Υ produced per
year in a sensitivity to gb

V of 2.1 · 10−2. Other possibil-
ity is to use a combined channel as e−e+ → τ−τ+ →
(((π−π0)ντ )(π+ν̄τ )
+(π−ντ )((π+π0)ν̄τ )) where the sensitivity to the polar-
ization of the τ+ → π+ν̄τ is better than τ+ → ρ+ν̄τ if we
do not analyze the next decay ρ+ → π+π0. The result is,

σgb
V

=
9.1√
N

(50)

and the number of events is similar to the previous case.
The sensitivity to gb

V that one can reach in this channel,
with 108Υ , is 2.3·10−2. As in the π channel we can increase
the statistics by integrating one of the decays, although
some sensitivity is lost. We integrate the direction of one
of the ρ or equivalently the π direction in (23) and only
require this τ to decay hadronically. Then we keep simply
the decay of a τ to ρν and then the decay of ρ to ππ. Then
we get a sensitivity of,

σgb
V

=
14.6√
N

(51)



J. Bernabéu et al.: P-odd observables at the Υ peak 213

but now the number of events has increased a factor of 10,
because N is the number of e−e+ → τ−τ+ → (((π−π0)ντ )
τ++τ−((π+π0)ν̄τ )) events. Again with 108Υ per year, one
gets a sensitivity of 1.6 · 10−2.

After this analysis we can combine a series of indepen-
dent measurements into a final value for gb

V with an error
given by

σ = (
∑

i

1
σ2

i

)−1/2 (52)

then we can combine the error obtained with the channels
e−e+ → (π−ντ )(π+ν̄τ ), e−e+ → (((π−π0)ντ )(ρ+ν̄τ ) +
((ρ−ντ )((π+π0)ν̄τ )) and e−e+ → (((π−π0)ντ )(π+ν̄τ ) +
(π−ντ )((π+π0)ν̄τ )). With 108Υ one gets a sensitivity to
gb

V of 1.5 · 10−2.
On the other hand, we can also combine the errors

obtained in the e−e+ → (((π−π0)ντ )τ+ + τ−((π+π0)ν̄τ ))
and e−e+ → ((π−ντ )τ+ + τ−(π+ν̄τ )) channels, and again
with 108Υ one gets a sensitivity of 1.3 · 10−2.

Notice that our results have been obtained with a sam-
ple of 108Υ . For a different number of Υ produced, the sen-
sitivity to gb

V would simply re-scale by a factor
√

108/NΥ .

5 Conclusions

In this work we have studied the possibilities of a high
luminosity B-meson facility to measure with high preci-
sion the Z − bb̄ vector coupling. At the energies of Υ (1S)
we have used the τ−τ+ channel to determine this cou-
pling through the τ polarizations. A complete analysis of
the hadronic decay modes of the τ lepton has been done,
with special attention to the τ− → π−ντ and τ− → ρ−ντ

as polarization analyzers. We have calculated the com-
plete correlated cross section with the decays of both τs
and from here the ideal statistical errors obtainable in the
measurement of gb

V . We have found that in one year run
of a B-meson facility with 108Υ , one can get a sensitivity
of 1.3 ·10−2, comparable with the present precision in this
coupling from the LEP/SLC measurements of Rb and Ab.

Acknowledgements. O.V. acknowledges the Generalitat Valen-
ciana for a research fellowship. This work has been supported
by Grant AEN96-1718 of the Spanish CICYT.

Appendix A

In a decay, A(σ) → B(λb) + C(λc), we can obtain the
density matrix, ρout, describing the complete final state
of particles B and C in terms of helicity amplitudes and
the initial density matrix in the following way,

ρout
λ,λ′ =

∑
σσ′

fλ,σ (Ω1) ρin
σσ′(Ω) f∗

λ′,σ′ (Ω1) (1)

where λ = (λb, λc).
It is very convenient to express our initial density ma-

trix in a basis of irreducible tensor operators, TL,M , with

coefficients tL,M , [4,7],

ρin

Tr(ρin)
=

1
2j + 1

2j∑
L,M

(2L+ 1)t(a) ∗
L,M T

(a)
L,M (2)

The coefficients t(a)
L,M are the so-called multipole parame-

ters,

Tr(ρin)t(a)
L,M (θ) = Tr(ρinT

(a)
L,M )

=
∑
σ,σ′

(ρout)σ,σ′C(1L1|σMσ′) (3)

where C(jLj|m′Mm) are Clebsch-Gordan coefficients.
For L = 1, we can relate [7] the usual polarizations

and the multipole parameters,

Px′ = −(t1,1 − t1,−1) = −2 Re[t1,1] (4)

Py′ = i(t1,1 + t1,−1) = −2 Im[t1,1] (5)

Pz′ =
√

2 t1,0 (6)

Using (2) to express the initial density matrix in the
basis of irreducible tensors and replacing the helicity am-
plitudes in the C.M. frame of the decaying particle with
(27), we get the final density matrix in terms of the multi-
pole parameters of the A particle and the reduced helicity
amplitudes,

ρout
λ,λ′ = Tr(ρin)

√
2j + 1
4π

×
∑
L,M

√
2L+ 1 (−)j−λ′

Tλ T
∗
λ′

×t(a) ∗
L,M C(j, j, L|λ′,−λ, λ′ − λ)

×D(L)∗
M,λ−λ′(Ω) (7)

This density matrix contains all the information available
in the process. For instance, if we want the angular distri-
bution we just have to take the trace on λ.Similarly the
density matrix for one of the final particles is obtained
taking the trace on the helicities of the other particle.

To define a complete set of observables we generalize
(2)

ρout

Tr(ρout)
=

1
(2j1 + 1)(2j2 + 1)

×
2j∑

L,M,L′,M ′
(2L+ 1)(2L′ + 1)

×C∗
L,M,L′,M ′T

(b)
L,MT

(c)
L′,M ′ (8)

and then these generalized multipole parameters,CL,M,L′,M ′,
include all the information on the density matrices of par-
ticles B and C, t(b)L,M = CL,M,0,0, t

(c)
L,M = C0,0,L,M and

additionally the correlations between them.
It is very important to notice here that (7) is only valid

in the C.M. frame of the decaying particle. However, in
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general in the LAB frame the decaying particle will move
with a momentum different from zero. So, we will be in-
terested in the transformation properties of these density
matrices under Lorentz boosts.

The transformation of an helicity amplitude under a
boost from the C.M. frame to the LAB frame is just a
rotation, the so-called Wigner rotation [12,16,17], that if
we choose φ = 0, is [7],

f
(CM)
λbλc,σ(θ, φ = 0) =

∑
λ′

b
λ′

c

(−)λ′
c−λc djb

λ′
b
λb

(ωb) (9)

×djc

λ′
cλc

(ωc) f
(LAB)
λ′

b
λ′

c,σ (θ, φ = 0)

The rotation of angle ωi is given by [7],

sinωi =
Mi sinhκ sin θ

| p′
i | , cosωi =

E′
iEi − coshκM2

i

| pi || p′
i |

(10)
where κ is the parameter of the boost from the C.M. frame
of the decaying particle to the LAB frame, related to the
velocity by v = tanhκ, Mi the mass of the particle and
(Ei,pi(θ)) its four-momentum in C.M. of the decaying
particle, transformed under the boost as p′

i = Λpi, in a
frame where the boost is along the z-axis. From (10) we
can see that under a boost collinear to the particle three-
momentum, θ = 0, our states do not suffer any rotation.

The helicity amplitudes in (9) are functions of two vari-
ables. For instance, we could choose the invariant variables
(s, t, u), keeping the same expression in any frame. Never-
theless, as we have seen in (27), these helicity amplitudes
have a specially simple form in terms of C.M. variables.
Then, we have used this freedom to express, both the C.M.
and the LAB helicity amplitudes in (9) in terms of C.M.
variables.

As can see in (1), density matrices are a product of
two helicity amplitudes, this means that using (9) we can
get the transformation of the density matrix of particle B

ρLAB = djb(ωb) · ρCM · djb T (ωb) (11)

It is very interesting to see how the multipole parameters
are affected by these rotations. We use (3) to express ρCM

in terms of these multipole parameters

ρLAB
σσ′ =

1
2j + 1

∑
LM

(2L+ 1)

×
∑
λλ′

d
(j)
σλ(ωa)(jLj|λ′Mλ)d(j) T

σ′λ′ (ωa)t(b) ∗
LM

=
1

2j + 1

∑
LM

(2L+ 1)

×(jLj|σ′σ − σ′)d(L) T
σ−σ′M (ω)t(b) ∗

LM (12)

Comparing again with (3) we see that in LAB frame we
get a new set of multipole parameters that are obtained
simply by applying the rotation to the C.M. ones.

t
(b) ∗
LM =

∑
M ′

dL
MM ′(ωb)t

(b) ∗
LM ′ (13)

This result is enough to obtain the multipole parameters
and density matrices in the LAB frame.

Appendix B

In this appendix, we present the general method to calcu-
late reduced helicity amplitudes, and we apply it to some
examples in the e+e− → τ+τ− processes.

Reduced helicity amplitudes are easily calculable by
means of (3) from the helicity amplitudes. So, our first step
is to obtain these helicity amplitudes from the Feynman
amplitudes that are calculated from the diagrams with
Feynman rules. Taking into account the normalization we
have defined for our reduced helicity amplitudes in (3)
and (27) the difference between them and the Feynman
amplitudes will just be a q2-dependent phase space factor,
irrelevant in all our observables. So, we can simply define:

Mσ,λ+,λ−(θ) = Kfσ,λ(θ) (1)

with Mσ,λ+,λ−(θ) the Feynman amplitudes.
Now we will explicitly apply this procedure to the cal-

culation of the reduced helicity amplitudes T(λ,λ′),ξ(γ) and
T(λ,λ′),ξ(γZA) corresponding to diagrams (1) + (2) and
(3) + (5) in Fig. 1.

The kinematics in the C.M. frame of the e+e− system
is defined by

lµ− = (E, 0, 0, |l|) qµ = (l− + l+)µ (2)

lµ+ = (E, 0, 0,−|l|) kµ = (k0, |k| sin θ, 0, |k| cos θ)

where lµ± is the four-momentum of the e±, whose helicities
are ξ± = ±1/2, kµ the four-momentum of the τ− and the
helicities of the τ± will be denoted as λ± = ±1/2.

The Feynman amplitudes corresponding to these dia-
grams are

Mγ
λ−,λ+,ξ+,ξ−(θ) = i

e2

s
(1 +

e2

s
Q2

b |FΥ (q2)|2PΥ (q2))

×V υ
τ (λ−, λ+, θ)gνµV

µ∗
e (ξ−, ξ+)

(3)

MγZA

λ−,λ+,ξ−,ξ+
(θ) = i

8GF√
2
gA

×(
e2

s
Qbg

b
V |FΥ (q2)|2PΥ (q2) − gV )

Aυ
τ (λ−, λ+, θ)gνµV

µ∗
e (ξ−, ξ+) (4)

where we have followed the notation of Sect. 2 and we have
introduced the matrix elements of the leptonic currents,

V µ
l (λ−, λ+) = ū(p−, λ−)γµv(p+, λ+)

Aµ
l (λ−, λ+) = ū(p−, λ−)γµγ5v(p+, λ+) (5)

Now we need to obtain an explicit expression for matrix el-
ements of the currents. To do this, we follow the method of
reference [18], which permits the calculation of these am-
plitudes using standard trace techniques. Then, the com-
plete results for the vector and axial currents, in the CM
frame and with the momenta along the z-axis are,

V µ
l (λ−, λ+ = λ−) = (0, 0, 0,−2Ml)
V µ

l (λ−, λ+ = −λ−) = (0, 4Epλ−,−2Epi, 0)
Aµ

l (λ−, λ+ = λ−) = (−4Mlλ−, 0, 0, 0)
Aµ

l (λ−, λ+ = −λ−) = (0, 2p,−4ipλ−, 0) (6)
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We have obtained all leptonic currents needed, because
they are well behaved Lorentz vectors or axial-vectors.
Then, we just have to rotate them, if the momentum is in
a different direction.

With all these results, we simply use (1) and (3) with
our Feynman amplitudes, (3) and (4), to obtain the re-
duced helicity amplitudes. For instance, the expression for
Mγ

λ=(1/2,1/2),ξ=(1/2,−1/2)(θ) is,

Mγ
(1/2,1/2),(1/2,−1/2)(θ) = i

e2

s
(1 +

e2

s
Q2

b |FΥ (q2)|2PΥ (q2))

×(0,−2Mτ sin θ, 0,−2Mτ cos θ) · (0,−2
√
s

2
,−2i

√
s

2
, 0)T

= i
e2

s
(1 +

e2

s
Q2

b |FΥ (q2)|2PΥ (q2))

×4Mτ

√
s

2
(−

√
2) (

− sin θ√
2

) (7)

where we have applied a rotation to the leptonic current of
the τ with respect to (6) and we have taken the complex
conjugate of (6) to obtain the electron current. The extra
minus sign is due to the metric gµν . In (7) we just have
to remove the rotation matrix element d10(θ), which is
exactly the last term in this equation. This procedure has
to be repeated with all the amplitudes and then, finally
we get the following results

KT(+,+),1(γ) = −i4
√

2
e2

s

×(1 +
e2

s
Q2

b |FΥ |2PΥ ) Mτ

√
s

2
(8)

KT(+,−),1(γ) = −i8 e2

s

×(1 +
e2

s
Q2

b |FΥ |2PΥ ) p0
√
s

2
(9)

KT(+,+),1(γZA) = 0 (10)

KT(+,−),1(γZA) = −i8 8GF√
2
gA

×(
e2

s
Qbg

b
V |FΥ |2PΥ − gV )

×|p|
√
s

2
(11)

Similarly, we can obtain the reduced helicity amplitudes
in (8).
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